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THE THEORY OF THE VIBRATIONS AND THE RAMAN
SPECTRUM OF THE DIAMOND LATTICE

By HELEN M. J. SMITH, University of Edinburgh

(Communicated by M. Born, F.R.S.—Received 29 December 1947)

INTRODUCTION

The crystal structure of diamond was first determined by Bragg in 1913 from X-ray photo-
graphs; the carbon atoms are arranged at the apices and median points of interlinked
tetrahedra. Born (1914) derived expressions for the three elastic constants of diamond in
terms of two force constants related to the valency bonds between neighbouring atoms.
But, at that time, the only experimental data available were the compressibility and the
Debye characteristic temperature ®, and precise determination of the valence force con-
stants was not possible. Meanwhile, investigation of the optical properties of diamond had
produced evidence for the existence of two distinct types, one with an absorption band at
8u in the infra-red, the other transparent at this point. Robertson, Fox & Martin (1934)
took up this problem and found that absorption in the infra-red is associated with absorption
in the ultra-violet; diamonds transparent at 8 transmit much farther into the ultra-violet.
Both types of diamond have Bragg’s tetrahedral structure, the same refractive index, specific
gravity, dielectric constant and electron diffraction. Their infra-red spectra are identical
up to 74, and the frequency shift of the principal Raman line is the same. The derivation of
the elastic constants was again considered by Nagendra Nath (1934). He extended the theory
to include central forces between second neighbours in the lattice. He also suggested that
the frequency shift of the principal Raman line corresponds to the relative vibration of the
two carbon atoms in the unit cell, along the line joining their nuclei.

Raman and his collaborators have recently (1941) put forward a new theory of lattice
dynamics according to which the vibrational spectrum of a crystal consists of a few discrete
lines. This is in direct contradiction to the quasi-continuous vibrational spectrum predicted
by classical or quantum mechanics. On this new theory there are eight fundamental
frequencies of vibration for diamond; the values of these frequencies are deduced from the
observed specific heat, ultra-violet absorption and Raman spectrum, which, it is claimed,
cannot be explained by ‘orthodox’ lattice dynamics. Raman (1944) has suggested that
there are, not two, but four types of diamond, two with tetrahedral symmetry and two with
octahedral symmetry depending on the electronic configurations, but X-ray analysis gives
no indication of this and the attempts of his school to explain the observed infra-red spectra
on the basis of their new lattice theory have been, up to now, unsuccessful.

Bhagavantam & Bhimasenachar (1944), have developed a new method of measuring
directly the elastic constants of crystals and have published results for diamond. This makes it
possible for the first time to determine the force constants between the atoms in the lattice. The
whole problem has therefore been reconsidered here on the lines of a general theory developed
by Born (1942), assuming arbitrary forces between first-neighbour atoms and central forces
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106 HELEN M. J. SMITH ON THE THEORY OF THE VIBRATIONS

between second-neighbour atoms. The values of the force constants are obtained from the
measured elastic constants and the frequency shift of the principal Raman line. One can
then derive approximations to the quasi-continuous vibrational spectrum of diamond and
calculate the specific heat and Debye’s characteristic temperature ®. Comparison with the
observed specific heat shows that first-neighbour forces alone are not sufficient to account
for the experimental results, but the addition of second-neighbour central forces produces
satisfactory agreement. The second-order Raman spectrum, first observed by Krishnan in
1944, can be calculated from the vibrational spectrum. The range and the positions of the
maxima are obtained without any arbitrary assumptions whatever, depending only on the
measured constants. To explain the relative intensities of the parts of the spectrum it is
necessary to postulate certain relations between coupling constants. These relations form
the basis for further investigation of the possible differences between the electronic configura-
tions in the two types of diamond. Itisevident that Raman’s claim, that lattice dynamics is
unable to explain the Raman spectrum of diamond, is unfounded.

PART I. THE THEORY OF THE VIBRATIONS OF THE DIAMOND LATTICE
1. THEORETICAL BASIS

This section summarizes briefly results already obtained by Born (1942) and Born &

Begbie (1947).
(a) Equations of motion of a crystal lattice

The lattice cell is described by three elementary vectorsa,, a,, a;. Then the position vector
of the particle at the vertex of any cell is

r' = la,+[’a,}a,, (1-1)
where {1, /2, [3 are integers.
If there are s particles in the unit cell with masses m, (k = 1,2, ...,s) and r, is the position

vector of the kth particle from the cell vertex, then
(y) =rrm, (1)

defines the position of the particle ( li) in equilibrium. The rectangular components of r( ]i)
are x“(i) (@ =1,2,3).

Now consider small arbitrary displacements u( lﬁ) of the particles from equilibrium. The
potential energy @ of the deformed lattice can be expanded in powers of the rectangular

components u“( li) (@=1,2,8) of u( /i) The linear terms vanish in equilibrium and the
second-order terms are
1 w n (U
%=y 3 3 30 i) ulp) =125, (1)
2
i ro

where cpu/,(kk,) — W ; (1-4)
0
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these second derivatives in equilibrium depend only on the difference of cell indices (=1,

and satisfy the condition ® l ® /
()=o) 0
The equation of motion of a particle of type £, mass m,, is then
=\ (U
()+z ECD“,,( o i) = o (1-6)

Introduce a ‘reduced’ displacement vector

v(i) = /my u(/f), (1-7)

and define the elements of the dynamical matrix of the lattice as

I-U 1 =7
Doc/)’( k' ) :'s/(mkmk’) (I)acﬂ( 9% ) (1 8)
(1 -7 AN )
Then (1-6) becomes va(k) +3 gbaﬂ( " )vﬂ(k,) —0. (1-9)
A solution of this equation for an independent normal vibration of the lattice is a plane
wave ) e
v( k) = V(k) eiot ), (1-10)
Then from (1-9) w?V, (k) ~—2 ED“ﬂ(kk) (k’) =0 (1-11)
B
I-U
e—ila@-1t)
and Daﬁ.(kk) ;Daﬁ( kk,) .
! —i(q.1l).
SO o

D(q) is the representation of the dynamical matrix in reciprocal space.

The equations of motion (1-11) for a wave-vector q in the reciprocal space of the lattice
are a set of 3s homogeneous equations in the reduced amplitudes V,(£). The necessary and
sufficient conditions that this set should have a non-trivial solution is that

| D(g) =] = 0, (1-13)
where 7 is the unit matrix of order 3s x 3s. For a particular wave-vector q, the characteristic
equation (1-13) has 3s roots ;. Three of these roots, the acoustic branches, as functions ofq,
tend to zero as @ — 0. The remaining 35— 3 roots, the optical branches, tend to finite limits
asq > 0. These 35— 3 limiting frequencies are the first-order Raman spectrum of the lattice.
The intensities of the lines of this spectrum depend on the symmetry of the lattice. Born &
Bradburn (1947) have shown that if each lattice point is a centre of symmetry then the
intensities vanish and the first-order Raman spectrum does not exist.

The elements of the matrix D(l kk'l ) are related through the symmetry of the lattice in
the following way: ]
A lattice point is defined by the vector r( k) referred to rectangular axes. A symmetry

operation of the lattice can be expressed as a transformation matrix T, and if ( K) is some

other lattice point, . L l
(x) = (i)

rlx) = 1) (1-14)

14-2
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108 HELEN M. J. SMITH ON THE THEORY OF THE VIBRATIONS

7
The elements of the matrix D( ) will then have the transformation law

Kk

"z ) =1o( ) (115)

where T is the transpose of 7" and the change of indices ( /i) is obtained from (1-14).
Further, since the potential energy ® of the lattice is invariant for rigid translations and

rotations, I .
3 Dasl) = 0 (116)
5Dt )al) = 50l )2y): (1)
From (1-16) we can define the matrix D( lgc) representing the force of a point ( /i) on itself as
Do) == 2 D) (1-18)
¥

where the dash on the summation sign indicates that the terms in which /" = 0, k = £’ are
to be omitted. ?
The choice of possible wave-vectors q is restricted by the ‘cyclic lattice’ condition (Born

1923).
The basic vectors b, of the reciprocal lattice are given by
1 if a=
aa 'bﬂ = . ﬂ,
0 if a=p,
b, — a,AQ, b, — UL 3:_31/\32 . (1-19)
The vector q = 2mq,b, +2mq,b, -+ 2mq;b,, (1-20)
where ¢, ¢,, g5 are integers, determines a reciprocal lattice point.
Then if r = [l'a, +[a,+Pa,,
the scalar product q.r'=2n(q, '+ q,24q43) (1-21)

is an integral multiple of 2m.
The cyclic lattice condition postulates that the lattice deformations have a period large
compared with the dimensions of the cell, so that any function

St =1, if Lr=Il+n (¢=1,2,3).
Hence for ¢@™ to be periodic in this way, the permitted values of ¢ must be such that

h h h |
=" =2 G=" (hyhyh = 0,12, (1-1)), (1-22)

(b) Derivation of the elastic constants

A solution of the equation of motion (1-9) for long-wave acoustical vibrations is
. l
V(i) =W(k) et ez(q'r(k)). (1-23)
So V(&) = W(k) &, (1-24)
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AND THE RAMAN SPECTRUM OF THE DIAMOND LATTICE 109

and (1-9) becomes W (F)—3 S Caﬁ( /5;) W, (k) =0, (1-25)
K7
i q q —i(a(tr—rx
with Caﬂ( kk’) —D, ﬂ(kk’)e (aekne)
LY ifar(L) \
~3D, ( ) w)), 1-26'
; A\ ki) € (
Let 0? = (), then (1-25) can be written
QW — C(g)W. (1-27)

Q, W and C(q) can be expanded in powers of the wave-vector q: for C(¢q) we have, in rect-
angular components of q,

aﬂ(kk/) ; aﬂ(kk/)’
(1)

Clil) = =13 2P ) 2

(2)
) =23 2 2ol i) )
C“ﬂ(kk') =220 “’-"(kk' W) e\t ) 0
Equating terms containing like powers of q on either side of (1-27), we obtain, following

Born & Begbie (1947), two approximations to the equations of motion (1-27). Written in
matrix elements these are

(1-28)

550 (f’)‘v}}(szzm ¢ ()W =o0; (1-29)
2 2 Copl e ) WotR') 3 3 S €l o) W = 03
(zm)fz)w — 33 /m.C. (q)ﬁ}(k')+zJ(m m) C (q)w (1-30)
< k « %G k~op\ Lk )8 & kTR X\ EE g

W, (@ =1,2,3) are three arbitrary constants, trivial solutions of (1-27) corresponding to
the three possible independent translations of the crystal as a whole.

@) (1)
Put Q = ¢? and eliminate Wj(£") between (1-29) and (1:30); the result may be written
po*W, = %D;ﬂ@) Wes (1-31)
where p == vlz my, is the density and v, = a,.a, A4, is the volume of the unit cell.
a k ’

Comparison of (1-31) with the equation for the amplitudes of elastic waves in elasticity
theory shows that the D, ;(¢) are related to the elastic constants in the following way:

[D11(q)] r0111 Ce6  Cs5 Ces €51 cs [ 4t ]

D3(q) Cee  Co2  Caa Co4 Ca6 Co2 7

Di3(q) _ | %5 Caa Cs3 C43 (35 C54 g3 (1-32)
Dis(q) Co5 Caq Caz 3(CagTCyy) Cy5+036)  3(Ceatcos) | | 20295

D;,(q) 1 Cag 35 F(Castoss)  F(esitess) F(essten) || 2059,

[ Dip(q) ] Lew G Csa B(coatoos) Cs6+014)  F(c12+ce6) 1 L2995

Hence the elastic constants may be expressed in terms of the elements of the dynamical

matrix of the lattice.
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110 HELEN M. J. SMITH ON THE THEORY OF THE VIBRATIONS

2. ELASTIC CONSTANTS OF DIAMOND

The diamond crystal is built up of carbon atoms lying on two equal interpenetrating
face-centred cubic lattices, relatively displaced one-quarter of the way along a cube diagonal.
The unit cell contains two atoms, one on each lattice; the distance between them is a,/3/2,
where 24 is the lattice constant of diamond (= 356 x 10~8cm.).*

Referred to a rectangular co-ordinate system with origin at a lattice point and axes
parallel to the edges of the cubes, the cell vectors of the lattice are

a, =a(0,1,1), a,=a(1,0,1), a;=a(l,1,0). (21)

The co-ordinates of the two atoms in the unit cell are (0, 0, 0) and (}a, 34, 3a) ; these atoms
are labelled O and O’ in figure 1. Atoms lying on the same cubic lattice as O are labelled
k = 1, and those lying on the same cubic lattice as O’ are labelled £ = 2. Each atom has four
nearest neighbours arranged tetrahedrally at a distance ¢,/3/2. We assume as a first approxi-
mation that the elements of the dynamical matrix are negligibly small except for first
neighbours; then the symbol / may be used to number these neighbours, in place of the

symbol ( kﬁc') .

Ficure 1. First neighbours of the two carbon atoms in the unit cell of diamond.

Table 1 gives the co-ordinates of the nearest neighbours of O and 0’, the corresponding
number / and the integers [!/%3 given by

rl = ['a, -+, + Pa,. (1-1)

* To avoid introducing too many fractions, Bragg’s notation has been followed.


http://rsta.royalsocietypublishing.org/

JA '\

/ y

A

a
)\
LU

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
V. \
b

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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TABLE 1
% % % k ! n 1 & 7%
first neighbours ta la la 2 I 0 0 0 21
of O (' =1) —3a —3a ta 2 2 0 0 -1 21
_la 1q ~la 2 3 0 -1 0o 21
1o ~ia ~la 2 1 ~1 0 0 21
first neighbours 0 0 0 1 1 0 0 0 12
of 0" (k' =2) a a 0 1 2 0 0 1 12
a 0 a 1 3 0 1 0 12
0 a a 1 4 1 0 0 12

The symmetry operations of the diamond lattice can be described by six transformation
matrices:
A,: The lattice has a threefold axis of rotation x; = x, = x5, s0

01 0
T,=10 o 1. (2:2)
1 0 0

The change of label /, in the notation of substitution groups, is
(1) (32) (43) (24)}
1) (32) (43) (24)

A,: There is a centre of inversion at the point ¥, = x, = x5 = $a: this is equivalent to
a centre of inversion at (0,0, 0) and a translation x, = x, = x; = }a.

(2:3)

-1 0 0
Hence T,=] 0 —1 0| and (I1) (22) (33) (44). - (29)
0 0 —1

A;: There are three planes of reflexion. One is ¥, = x, giving

0 1 O
T,=|1 0 of and (1) (2) (43) (I) () (43). (2-5)
0 0 1

The other two planes of reflexion x, = x, and x; = ¥, can be obtained from A, and A,.

A : A rotation through §7 about an axis through the point (1a, 4a, 1a) parallel to the
x3-axis followed by a rotation through 37 about an axis through the same point parallel
to the x,-axis, gives

0—-1 0

T,=|0 0 —1| and /A
1 0 0 3) (21) (42) (19).

A;: Arotation through 7 about an axis parallel to the x,-axis through the point (14, 34, 1a)
followed by a rotation through {7 about an axis through the same point parallel to the
Xy-axis, gives

(2°6)

-

(41) (13) (34)

0 1 0 (2)
S T B e ) 27)

o (
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112 HELEN M. J. SMITH ON THE THEORY OF THE VIBRATIONS

A;: A rotation through im about an axis parallel to the x,-axis through the point
(}a, a, La), followed by a rotation through {7 about an axis through the same point parallel
to the x;-axis, gives

0 -1 0
4 31 2
r—| o o 1} wa 0002 @) o5
R @ (1 (1) ()
To these are added the symmetry conditions of the dynamical matrix: from (1-5)
D(l)—D(“l 2-9)
) = Do) <
From A,, D! — T,D'T, = D,
ie. Di=D!, D?-D% D3=D3 D*=D" (2-10)
From (2-9) and table 1,
Di=D'=D! D?2=D?>=D? D3=D%=D3 D*=D'=D" (2:11)
Thus all the matrices D' are symmetric.
From A,, since D! is invariant with respect to 77,
Di, = D}, = Dy, Diy = Diy = Di;. (2:12)
D 1 1* .
So we may put ﬁ} =——|f a f}, (2-13)
DI m ;
n Pl
where m = mass of carbon atom.
D2 N 1 [« f —f]
From A,, _} =T,DT,=—=— [ a —f]. (2-14)
D2 m
| —F —F o]
By repeated application of A; we find
D3 - 1 [ —f f]
Dﬁ} = 711D2711 == ——7—n~ —-ﬁ [0/ ““ﬁ 5 (2.15)
: L £ —=F o
Dt . 1 [ o —f —f]
and ~}=:fz/z>371~~—~~~ 4« B (2:16)
D¢
L—F B ol

These eight matrices D! and D! (I = 1,2, 3, 4) satisfy all the other relations which may be
deduced from the symmetry operations.

1 0 0
0 0 4o
Lastly, from (1-18), D(ll) = D( ) = n{[g (1) (1)} . (2:17)

We now proceed to calculate the matrices C( kgc’) from the relation

Cl i)~ 3D L) ), (1-26)
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AND THE RAMAN SPECTRUM OF THE DIAMOND LATTICE 113

Table 2 gives the values of the rectangular components of r( kﬁc’) for the first neighbours
of O and O'.

TABLE 2
l
\ 1 2 3 4 \ I 2 3 4
r
; ‘
X (1 2) —%a ta ta —ta % ( 211) ta —3%a —3a ta
x2( 112) —1la ta —%a ta Xy ( 211) ta —%a ta —%a
o O I U R e R
T Y J— 9\ _ of 1 )
Slnce D!=D'andr! = 0(12) C( a1 ) (2-18)
Expanding in powers of q, we find
0 ) W W @ @
7\ _ (1 q q q q .
C(i%)=Clar) Cliz)==Cla) (i2)=C(s0): (219)
so it is only necessary to calculate the expansion of C( 1{12) .

Also
0) 0) (1) (1) (2) (2)

1) =Clo) = 2(0) = Pla)s €(8)=C(s) =0 C(J)=C()=0
0(11)_0(22)_1)(11 “D22’ 011 022 0, 011 022 =0. (2:20)

The expansion of C( lq2) is

I

C( q) - Dt g7, 2-21
12 z=1,zz,3,4 ‘ (2-21)
1 0 O
0) 4o
Hence - C(lq2)=—%~ 0 1 Oj', (2-22)
|0 0 1
., [0 g, ¢
) z 9y
0\ _ 2l |
0(12)_ mn |1z 0 qx:I: (2-23)
9, 9. O
@/ q a2 a(g;+4;+42) 264.4, 264.4,
0(12):%' 264.4, o(gi+gi+42) 264,9. | (2:24)
2044, 204,4. (g2 + g2 +¢2)
1 0 0
(0) q _(0) q -‘40‘
0(11)"0(22)“77{[0 1 0]- (2-25)
1 0 O :

Substituting these matrices in the equation (1-29),

1 0 0 a 9. 4,
j‘,j‘[o I o]w’( W(2))+Jm - 2‘“’5’)[% 0 qx}W=o,
0 0 1 9 4. O

Vol. 241. A. 15
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114 HELEN M. J. SMITH ON THE THEORY OF THE VIBRATIONS

z

(1) (D . 9 49y
and W(1)—W(2) = z—‘%@é [g 0 q,|W. (2-26)
9, 4 O

Substituting (2-26) in (1-30),

. 0 g 4]0 ¢ 4,
2mw*W = —a? q. 0 dx q; 0 qx W

o

9 9 Ollg, ¢ O
a(gr+q;-+-42) 2fq.4, 264.94.
+a*| 2044, a(g;+4q;+42) 26q,9. |W
2/4.4, 2$4,4. a(g;+g5+42)
Therefore
_ , _
ag;+ (oc-—%) (g5-+42) /)’(2—9 9:4y ﬂ(2~§) 92
w_ @ __é)) 2 ( “_/’f) 2 | 2) ( _F .
oW =2 H2-D)aa,  agr(e) @ A2-l)ee W @2)
. 2
/>’(2 —{,—f) 0.9 5(2—2) q,9: gt (%%) (g3 +45)
This has the form w?W — %D’(q) W, where
] _ ] \ \ o
D1, () o oc—‘—i— a-’% 0 0 0 q2
' ﬂZ ﬂZ 2
D3y (9) o a ’ocu’o? 0 0 0 qz
2 2
Dii(q) ) oc—’é)— a—ﬁi a 0 0 0 7>
a o4 (o4
Diy(q) o oo 2=t o o ||
pu| Lo o o o met) o ||
Dirlg) o o o oo apz-t)] |2,

The unit cell has volume v, = a,.a,Aa, = 243, So the density p = 2m/2a® = m/a3.
Comparing (2-28) with (1-32) we find the elastic constants are

1 1 2 1
C11 = Cop = 33 = 5 & Caa = C55 = o6 — %(“*;} C12 = 013 = G = 5, (26—a). (2-29)
The remaining elastic constants vanish.
Solving (2-29) for x and f,  « = 2acy;, f = a(c;;+cy)- (2-30)

The elastic constants satisfy the quadratic relation

4cy1 (01 —cgq) = (611 012)% (2-31)
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This quadratic relation has been obtained already by Born (1914) using as repeating unit
a cube of side 2a containing eight carbon atoms and considering as here only forces between
any carbon atom and its four nearest neighbours. '

Now the atoms O and O’ in the unit cell (figure 1) have each twelve second neighbours
at a distance «,/2, lying on the same face-centred cubic lattice. As a second approximation
let us consider in addition to the first neighbour elements the elements of the dynamical
matrix corresponding to these second neighbours.

Ficure 2. Second neighbours of the atom ‘O° in the unit cell.

Figure 2 shows the second neighbours of the atom O; table 3 specifies the co-ordinates
and labelling of these neighbours and table 4 the integers [!/%/* given by r! = ['a, +[?a, - [*a,.

TABLE 3
% Xy x5 k l % %, X3 k l
0 a a 1 5 R la —1a —1la 2 5
S 0 a —a 1 6 (e} 3a —3a 3a 2 .6
kS a 0 a 1 7 s —la ta —1la 2 7
v —a 0 a 1 8 a 3a ta —3a 2 8
3 a a 0 1 9 5 ~—la —1ia La 2 9
= a —a 0 1 10 =2 —3a 3a La 2 10
o0 0 —a —a 1 11 o0 1a a 3a 2 11
& 0 —a a 1 12 & ia 3a —la 2 12
g —a 0 —a 1 13 o 3a ta ga 2 13
g a 0 —a 1 14 § —1la y 3a 2 14
&  —a —a 0 1 15 § a . sa. a 2 15
—a a 0 1 16 3a —1la 3a 2 16
TABLE 4
) 5 6 7 8 9 10 1 12 13 14 15 16
11 12 13 14 15 16 5 6 7 8 9 10
I 1 0 0 1 0 -1 —1 0 0 -1 0 1
2 0 -1 1 0 0 1 0 1 -1 0 0 —1
B 0 1 0 -1 1 0 0 -1 0 1 -1 0
iR 11 11 11 11 11 11 11 11 11 11 11 11
22 22 22 22 22 22 22 22 22 22 22 22

15-2
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116 HELEN M. J. SMITH ON THE THEORY OF THE VIBRATIONS

The twenty-four matrices D! and D! (I = 5,6,7,...,16) can be expressed in terms of
three constants A, 4, v by using the transformation matrices 7" ((2 2) ... (2-8)) as for the first-
neighbour matrices D’. Then »

D5 — DS 1 (A 0 0] DS — Db ‘ 1 A 0 0] )
Dl — Dﬁ} = _% 0 ©®ov S )Y Dﬁ} =——10 H —vi,
K |0 —v u
7 = D7 # 0 V] 8 _ B [ # 0 —V]
gla MDT} — 0 4 0], D _'D“} S 0 A 0f,; (2-32)
= D13 m D14~ D4 m s
v 0 pl ’ —v 0 g
DY — DY 1 L g* D10 — pio 1 g_
o o A "o o A
From (1-18), (2-17) is replaced by
0 0 4 1 0 0
D(ll) = D(22) = E(Oﬂ—f‘ll-}?Qﬂ) 0 1 O0f. (2-33)
10 0 1

Since D! = D! and r! = —r', the equations (2-18) and (2-19) still hold and the expansion
of 0(12) is given as before by (2:22), (2-23) and (2-24).

. 7\ _ q
But since C(ll) = C( 99 ) (2-20) is replaced by

Wig\ @gq Drgy W q) @Drg\  @rgy :
0(11)“0(22)’ 0(11>_“0(22’ 0(11)”0(22)- (2-34)

Table 5 gives the rectangular components of r( kﬁc’) for the second neighbours of 0’, since

from (2-34) it is necessary to calculate the expansion of C( 292) only.

TABLE 5
l ‘ .
\ 5 6 7 8 9 10 11 12 13 14 15 16
r N\
x‘(kﬁc’) 0 0 —a a —a —-a 0 0 a —-a a a
{
xz(kk’) —a —a 0 0 —-a a a a 0 0 a —a
{ -
x3(lck’) —a a —a —a 0 0 a —a a a 0 0
kE 22 22 22 22 22 22 22 22 22 22 22 22

(1) q 4o 00 : .
Thus C( )=~ 0o 1 of, (2-25)
0 1 : ‘
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(88 q
0(22) ~ 0, (2-35)
) . 2uq%+ (A+4) (42+42) 2vq,.q, 2vq, 4,
(2 2a .
¢ (2q2) = 24,4y 2ug;+ (A+1) (24 42) 204, 9: - (2-36)
2vq,4, 2vq,q, 2uq%+ (A+4) (42+¢2)

Substituting again in (1-29), (2-26) remains unaltered, but (1-30) now leads to

[+ 8u] g 2 [ﬁ(2—§)+8v 924y [ﬁ(2~§)+8v:| 9-9x
+ a~§——~l—-4(/l -}—,u)]
X [g5+42]
. [ﬂ(Q ~§)+8v 9.9, [x+8ulq; [ﬁ(2—-§)+8v 9,9-
a 2
W= +[~—%+4(A+y)] W, (2:37)
x [g2+47]
[ﬂ(2 ——’;) +8v (4.4, [ﬂ(2 “é) +8v(q,q. [e+84]q2
2
+ oc——’% +4(A —I—,u)]
I x[gi+4;] J
Le. 0?W = %D’(q)W and
_ - . , . ar -
Di,(q) | o+ 8u w—%_ a~% 0 0 0 g
+4(A+p)  +4(A+4)
D £ £ 2
22(q) a— a+8u o= 0 0 0 qz
+4(A+p) +4(A+p)
/ I B
D3y(q) a—" o o+ 8u 0 0 0 g2
2
- pg—n +4(A+p)  +4(A+p) | . (238)
, /4
Diy(q) 0 0 o %) o o |24
' + 4y
Diy(g) 0 0 0 o ¥z o |le
+4v
Dis(o) 0 0 0 o o 24| 2
L d " | +4v L



http://rsta.royalsocietypublishing.org/

N

a
L
/%
AL B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

JA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

118 HELEN M. J. SMITH ON THE THEORY OF THE VIBRATIONS
Comparison with (1-32) gives

1
O == Cgg = 33 = 5 (a+8pu),

1 2
€44 = C55 = Cg6 — %(““%-FM—!—‘JE#), (2-39)

1

These equations (2-39), as they stand, cannot be solved to give the atomic constants in
terms of the elastic constants, and there is no relation between the elastic constants analogous
to (2+31).

But if it is assumed that the forces between an atom and its second neighbours are central
forces, then it is already known (Born 1940) that for a simple face-centred cubic lattice under
central forces, the elastic constants can be expressed in terms of one atomic constant, and

€1y = 2013 = 204y (2-40)

So taking the terms in (2-39) referring to second neighbour forces,

8u = 2(4A+4pu) = 2(—4d—4u-+8v),
therefore A=0, p=v. (2-41)

The elastic constants in terms of , f, ¢ are then
1
Cn = Cop = O3 =5 (a+8u),

1 2
C4q = C55 == Cgg = ‘2‘4(0‘“/*3‘“1“4/4),

P (2-42)

~

1
Crg =13 == Co3 = 5, (2 —a-+4u)

From (2-42) can be derived three quadratic expressions for «, £, u in terms of ¢, €19, €4y
but there is no relation between the elastic constants.

3. FREQUENCY SPECTRUM OF DIAMOND
The frequencies of vibration of diamond are obtained by solving the characteristic
equation | D(q)—w?I| = 0 (1-13)
for various wave-vectors ¢ in reciprocal space.
The cell-vectors of diamond are
a, =a(0,1,1), a,=a(1,0,1), a,=a(1,1,0). (21)
Thus from (1-19) the cell-vectors of the reciprocal lattice are

1

1 1
by =5 (=1, +1,+1), by=g (+1,=1,+1), by=5 (+1,+1,~1).  (31)

The reciprocal lattice is a body-centred lattice.
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The wave-vector q is then

1
1= 2_42"[(_91‘1‘924'93), (91— 92+ 95), (11 + 42— ¢5)] (3-2)
1
or q= '2";277[%0 9y ‘]z] (3'3)

From the condition of the cyclic lattice (1-22) it is sufficient to take values ofq in reciprocal

space such that
0<9q, g5 g3<1. (34)

The elements of D(q) are obtained from (1-12) by substituting the matrices D given by

(2-13), (2-14), (2-15), (2:16), (2:32) and (2-33), and the vectors r* given by (1-1) and tables
1 and 4. They are as follows:

2
D”(lql) D“(2qQ) - [2a+ {2 — cos 2mq, —cos 2m(q,—q5) }
+ p{4 — cos 2mq, — cos 2mgs — cos 2m(q, — q,) — cos 2m (g3 —q;) ],
2
Dzz(lql) = D22(2q2) ~m [20+2A{2— cos 2mq, —cos 2m(q; —q,)}
+ p{4 — cos 2mq; — cos 2mq, — cos 2m (g, — q5) — cos 2m(q; — q5)}],
2
033(1q1) = D33<2q2) = [20¢+A{2 — cos 2mg; — cos 2m(q; — ¢5) }
+ {4 — cos 2mq, — cos 2mq, — cos 2m (g5 — q,) — cos 2m (g, —q3) 1],
2v
Doy ) = Diaf ) = 2 [cos 2m(g, — g) —cos 2mgs],
2v
D13(1q1) = D13(2q2) ~m [cos 2m(q;— q;) — cos 2mg,],
9 - (3‘5)
D23(1q1) = D23<292) = [cos 2m(g,— q5) —cos 2mq, ].
D”(lq2) - D22(1q2) - D33(1q2) - Dﬁ(le) - D§2(2ql) - D§3(2q1)
_ ___;‘_2 [1 - ¢27ids - g=2mia> |- g=2riar]
D q — D* q N [1 +e—2ﬂiq3___e~2ﬂiqz~e—2ﬂiq1]
2\12 2\21 m 8
D13<1q2) = D?S(qu) = ___’g_ [1 ¢~ 2migs _+e—2ﬂiq2_e'2ﬂi41],
D23(1q2) - D§3(2ql) a _g [1—emine e, J

where D;‘:ﬁ( /cZ’) is the complex conjugate of Da/,»( k%') .

Since the matrices D' are symmetric, the dynamical matrix D(q) in reciprocal space is
Hermitian and so all the roots w; of the characteristic equation (1-13) are real.
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120 HELEN M. J. SMITH ON THE THEORY OF THE VIBRATIONS

In the ¢,, g,, g, space, the elements of D(q) are:

4
D”(lql) - Du(292) =~ [a+A{1—cos mq, cosmg_}
+p{2— cos mq, cos Mg, —cos mg, cos mq,}],

4
D22(1q1) = D22< 2q2) = [a+A{1 —cosmgq, cosmq,}
: + {2 —cosmq, cos mg,—cos mq, cosnq,}],
y y q. x y
4
033(1(]1) = D33(292) =— [¢-+A{1—cos mq, cosmq,}
+u{2—cos mg, cos mq,— cos mq, cos mq,}],
4v . .
D12(1q1) = D12(2q2) = sinmg, sinmg,,
4y . .
D13(1q1) = D13(2q2) = sinmg, sinmg,,
- 3-6)
4v . . (
ng(lql) = D23(2q2) = sinmg, sinmg..

¢~ Tiaxtay) | g mildzt ) |- g—m'(qy+qz)] ,

’b) []_ — g—ﬂi(Qx"'Qy) -4 g‘”i(42+q::) — g"ﬂi(Qy‘*‘QZ)] ,

+
'D12( 9 ) — D;kz(qu) — _% [1 _}_g—”i(4x+¢1y)_._g"m'(Qz""Qx)_g*”i(‘ly*‘%)],
-

D23( q ) — -D5k3( 7 ) — _g [1 _.g‘”i(‘lx‘l'lIy)__g_ﬂi(Qz’*‘q::)_]_g“Wi(lIy"'QZ)].

J

In order to take full advantage of the symmetry properties of the D, ;(¢), consider theregion
of allowed wave-vectors in the g,, ,, ¢, space. This is (see figure 3) the first Brillouin zone
of a face-centred lattice, an octahedron with its vertices cut off, defined by

. ==+1, ¢q,==x1, q,==+1, QxiQyin:i%' (3:7)

Ficure 3. The first Brillouin zone of a face-centred cubic lattice (Sommerfeld & Bethe 1933).
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AND THE RAMAN SPECTRUM OF THE DIAMOND LATTICE 121

Then from the form of the elements D, 4(¢) it is necessary only to consider certain points
in the positive octant of the octahedron, points such that

0<q,<9,<¢,<l, ¢, +q,+q.<% ' (3-8)

A selection of points in this positive octant is obtained by dividing the range 0 to 1 of
91> 995 ¢5 into eighths and introducing vector components

;= 8q; (b1 Pas p3 Integers). (3:9)

Then q = 3[(—p1+batp3)s (br—Da+13)s (D1+D2—13)]

QY 8

%[ﬁx) py’pz]’ (3'10)
The integers p,, p,, p, are either all odd or all even and

There are twenty-nine sets of numbers of this type.
To determine the frequency distribution, the roots of (1-13) for each one of these sets of
integers must be weighted according to the number of similar points in the whole octahedron.

Let A = mo?, 4 = mD“(lq2) = mD22(lq2) = mD33(1q2),
B—mDy(%),  C—mDy(D),  E—mDy(l),
(3-12)
F— lel(lql)a G = szz(lql)a H= mD33(lql),
J=mDy(1), K- me(l‘-’l), L —mDy( ),
then in the general case, the characteristic equation (1-13) is
F—-A J K A B C
J G-A L B A E
K L H-A C E A (313)
A Bx C*x F-A J kK |

B* A* E* J G—-A L
C* E* A* K L H-A
A first approximation to the frequency distribution is obtained by neglecting the forces

between second neighbours, i.e. put A = g = v = 0. Then

F=G=H=40, J=K=L=0, (3-14)

and the equation (3-13) reduces to

""2D(1q2)D*(1qg)—(4“—A)2I —0, (3-15)

where [ is the unit matrix of order 3 x 3.

Vol. 241. A. 16
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122 HELEN M. J. SMITH ON THE THEORY OF THE VIBRATIONS

A second approximation to the frequency distribution is obtained by considering the
second-neighbour forces to be central forces. Then

A=0, p=v. (2-41)

The equation (3-13) has then no general solution and must be solved numerically. How-
ever, for certain sets of points (f,, p,, p.) the determinant breaks down into determinants
of lower order.

(1) po=4p, = p, or p; = p, = p5. These points lie on the main diagonal of reciprocal
space.

Then from (3-6) and (3-12),

F=G=H, J=K=1L, B=C=E. (3-16)

~ The determinant (3-13) reduces to

F—-J-AN A-B P F+2J—A A+2B ;: (3:17)
A*—B* F—J—A A*42B*  F42J—A
So A= 4(a+psin?nq,) +2./[02(1+ 3 cos?ng,) +A(f+2«) sin®ng,], } (3-18)
A; = 4(a+4pusin?nq,) 4+ 2, /[a?(1+ 3 cos?ngq,) +4f(f —«) sin?mq,].
Ifp,=p,=p.=0,ie.q =0, then
Ay =4dat2/(40?), Ay=4a+2/(4a?),
therefore 0] 93 = %’ @y 5,6 = 0. (3-19)

This is the frequency shift of the first-order Raman line of diamond ; in wave-numbers

1 /8a . .
V=g (¢ = velocity of light). (3-20)

(2) p. = p,» b arbitrary or p; = p,, p; arbitrary. This gives
C=E, F=G, K=L. (8-21)

The determinant (3-13) splits into a determinant of the fourth order and one of the second

order.
If, in addition, p, = 0, then K = L = 0, but no further simplification of the determinant

results.
(8) p, arbitrary, p, = p, or p, arbitrary, p, = p;. Then
‘ B=C, G=H, J=K. (3-22)

As in (2), the determinant splits into two smaller determinants, one of the fourth order
and one of the second order.
If, in addition, p, = p, = 0, i.e. p; = 0, py = ps,
B=C=0, J=K=L=0. (3-23)
G—-A A+E H G—-A A—E H F—-A 4

T
hen A* L E¥ G—A || A¥—E* G—A| A* F—A

‘ — 0. (3-24)
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Since (A+E) (4% - E*) = (A—E) (4* —E¥),

| (3-25)

Ay » = dut-4p(1—cosmg,) £.2./2 /[0 + 2+ (a2 — ) cosm_]x],}
A; = 40+ 8u(1 —cosmq,) +2./2a,/(1+cosmg,).
(4‘) bi=38, by b= 0. Then -
, A=C=J=K=L=0, (3-26)

and (3-13) becomes
[(F—A)(G—A) (H—A)—EE*(F—A)—BB*(H—A)]? = 0. (3-27)

(8) bukpy=+p..
The roots of (3-13) have been calculated numerically by a method due to Aitken (1937).

4. NUMERICAL RESULTS

There are four quantities expressed in terms of the three parameters «, £, #; these are the
elastic constants

1 1 2 1
011:%(0‘+8ﬂ)3 0442%(“““3’}“4:“)’ 612:2_0(216)—“+4ﬂ)9 (2-42)

and the frequency shift of the first-order Raman line,

1 /8a
There is an identity between these four quantities:
8. 4m%c? 5”; 2 |:47r202 —;% V2 +8¢;,—1 6044]
— 1. (4-1)

2.2 o 2
[3.477 54" —8011—1—16012]
If the action of second neighbours is neglected (x = 0) (4-1) breaks up into two identities,

4cyy (61— C44) _
(e11F¢12)? =L (2:31)

which has been obtained already in § 2, and

m
an2c2 ™ 2
MRSV (42)
= 1.
811
The frequency shift of the first-order Raman line of diamond is
v =1332cm.™}, (4-3)

(see for example, Robertson, Fox & Martin (1934)).
The only direct measurements of the elastic constants of diamond are those of Bhaga-
vantam & Bhimasenachar (1946): they obtained the values

16-2
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124 HELEN M. J. SMITH ON THE THEORY OF THE VIBRATIONS

Adams (1921) and Williamson (1922) have determined the compressibility of diamond,
both using the same apparatus. They found, respectively, 0-16 and 0-18 x 107¢ per megabar;
the mean of these results, 0-17 x 1076 per megabar, corresponds to a bulk-modulus

5:9 x 10'2 dynes/cm.2. (4-5)
But the bulk-modulus L= e +200), | (4-6)
and substitution of the values (4-4) gives
i— = 5'8 X 10'2 dynes/cm.?, (4-7)
in reasonable agreement with (4-5).

Now substituting the experimental values (4-3) and (4-4) in the identities (4-1), (2-31)
and (4-2), taking '

lattice constant 2a = 3-56 x 1078 cm., )
mass of carbon atom m = 1-995 x 10723 g., i (4-8)
velocity of light ¢ = 3x10%cm./sec.,
we find L.H.S. of (4-1) = 1-40, (4+9)
L.H.s. of (2:31) = 1-10, (4-10)
L.H.S. of (4:2) = 0-46. (4-11)

The discrepancies (4:10) and (4:11) show that the action of first-neighbour forces is not
sufficient to explain the physical properties of diamond, but (4-9), which takes into account
second-neighbour forces, though an improvement on (4-11), is worse than (4-10). As Born
(1946) has already pointed out, there are three possible explanations, either there are
experimental errors, or the second-neighbour forces are not central, or more distant neigh-
bours exert appreciable forces. Acceptance of the second or third alternative would preclude,
at present, any determination of numerical values of , £, #. Moreover, in view of the agree-
ment between the two values of the bulk-modulus (4-5) and (4-7), experimental errors in
¢;; and ¢;, must be small.

Since the Raman frequency (4-3) is measured optically and so to greater accuracy than
the elastic constants, from (3-20) and (4-3)

21 25091)2
o= S — 01157 X 10° dynes/em. (4-12)
Then a+8u = 2ac,,
so from (4+4) and (4-12), 4 = 0-0226 x 10%dynes/cm., (4-13)
1
and P 3(611+2610)

1
~ 6a (4/)"“0‘“1“ 164),
giving, from (4-7), (4-12) and (4-13),
f = 0-104 x 10 dynes/cm. (4-14)
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1 2
Now Cas = 5 (oa —% + 4/;)
= 50 X 10'2dynes/cm.?, (4-15)

on substitution of the values (4:12), (4-13) and (4-14).
Lastly the observed values

v=1332cm.7!, ¢;; = 9-5x10"2dynes/cm.?, ¢, = 3-9x 102dynes/cm.2,
and the calculated value €44 = 5°0 X 10'2dynes/cm.2,
give L.H.s. of (4-1) = 1-04, L.H.s. of (2:31) = 0-95. (4-16)

Thus a change in the value of ¢,, from 4-3 X 102 to 5-0 x 10! dynes/cm.? considerably
improves the value of the identity (4-1).

Numerical values of elements of mD(q) for the twenty-nine sets of integers p,, p,, p, given
by (3-11) are obtained from (3-6), using the values (4:12), (4-13) and (4-14) of a, f, p.

TABLE 6. FREQUENCIES OF VIBRATION OF DIAMOND UNDER
THE ACTION OF FIRST-NEIGHBOUR FORCES ONLY

(Units of w; are 10 sec.~1)

b, b, 2, ), W, 25 Wy Wy g
8 4 0 2:29 229 1-78 1:78 1-03 1-03
8 2 2 2:32 2-27 1-84 1-71 1-06 0-95
8 2 0 2:29 2-29 1-78 1-78 1-03 1-03
8 0 0 2-29 2-29 1-78 1-78 1-03 1-03
7 3 1 2:33 2-28 ) 1-89 1-66 1-05 0-95
7 1 1 2:31 2-30 1-93 1-61 1-02 0-99
6 6 0 2:32 2:27 1-84 1-71 1-06 0-95
6 4 2 2:36 2-33 1-92 1-62 0-94 0-85
6 4 0 2:35 2-29 1-94 1:59 1-03 090
6 2 2 2:35 2-33 1-98 1-54 0-94 0-88
6 2 0 2-34 2-32 2-04 1-46 0-97 0-91
6 0 0 2:33 2-33 2-09 1-40 0-94 094
5 5 1 2:37 2:31 1-94 1-60 0-98 0-85
5 3 3 2:39 2:-38 1-95 1-58 0-80 0-78
5 3 1 2-38 2-35 2-07 1:42 0-89 0-79
5 1 1 2:37 2-37 2-18 1-25 0-83 0-82
4 4 4 240 240 1-91 1-63 0-73 073
4 4 2 240 2-38 2:02 1-49 0-81 0-73
4 4 0 240 2-34 2-11 1-37 0-90 0-73
4 2 2 2:41 241 2-17 1-26 0-71 0-69
4 2 0 2:43 2-38 225 1-11 0-79 0-65
4 0 0 2-41 241 2:32 0-96 0-70 070
3 3 3 2:42 2-42 2-11 1-36 0-67 0-67
3 3 1 244 2-41 2-24 1-13 0-70 0-59
3 1 1 2-46 2-45 2-36 0-86 0-55 0:52
2 2 2 2:46 2:46 2:33 0-95 0-50 0-50
2 2 0 2:48 2:46 2-40 0-75 0-50 0-39
2 0 0 2:48 2:48 2-46 0-49 0-37 0-37
1 1 1 2:50 2:50 246 0-48 0-27 0-27

Table 6 gives the numerical values of the frequencies of vibration w;, for these twenty-nine
points considering forces between first neighbours only. Table 7 gives numerical values of
frequencies if, in addition, there are central forces between second neighbours in the
lattice.
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126 HELEN M. J. SMITH ON THE THEORY OF THE VIBRATIONS

The frequencies belonging to certain wave-vectors have been plotted in figure 4 : the wave-
vectors are given in terms of (p,, p,, p,). The separation into optical and acoustic branches
is obvious. The degeneracies in some of the graphs could be removed by a more accurate
determination of the values of a, § and x than was possible from the available experimental
data. ‘

TABLE 7. FREQUENCIES OF VIBRATION OF DIAMOND UNDER THE
ACTION OF FIRST- AND SECOND-NEIGHBOUR FORCES

(Units of w; are 10'* sec.™)

2 by b, 2 W, W3 O Wy Wg

8 4 0 2:51 2-51 2:12 2-12 1-48 1:48
8 2 2 248 248 2:27 212 1-53~ 1:30
8 2 0 2-51 2-51 2-17 2-17 1-44 1-44
8 0 0 2:48 248 223 223 1-40 1-40
7 3 1 2-50 2:50 224 2:07 1:55 1-33
7 1 1 248 248 2:30 - 2:06 1-43 1-35
6 6 0 248 2:48 2.27 2:12 1-563 1-30
6 4 2 2:51 2:51 2-28 2-07 1-35 1-16
6 4 0 2-51 2-51 2-34 2-01 1-47 1-25
6 2 2 249 249 2-33 1-96 1-37 1-21
6 2 0 2-51 2:51 240 1-90 1-34 1-23
6 0 0 2-49 249 243 1-87 1:28 1-28
5 5 1 2-49 249 2:27 2-00 1-46 1-15
5 3 3 2:49 2:49 232 2-06 1-13 1-06
5 3 1 2-51 2-51 2-35 1-88 1-30 1-05
5 1 1 2:50 2-50 2-42 1-68 1-17 1-14
4 4 4 2-50 2:50 2-34 211 0-99 0-99
4 4 2 2-50 2-50 2-38 1-96 1-14 0-99
4 4 0 250 2-50 244 1-78 1-33 0-99
4 2 2 250 2:49 249 1-71 0-98 0-98
4 2 0 2-51 2-51 249 1-54 1-09 0-88
4 0 0 2:51 2-51 2-51 1-35 0-97 0-97
3 3 3 2-50 2-50 245 1-84 0-91 0-91
3 3 1 250 250 243 1-55 1-01 0-80
3 1 1 2-51 2-51 2-51 1-21 077 0-74
2 2 2 251 2-51 2:51 1:34 0-69 0-69
2 2 0 2-51 2-51 2-51 1-07 073 0-54
2 0 0 2-51 2-51 2-51 0-71 0-52 0-52
1 1 1 2:51 2-51 2-51 0-71 0-37 0-37

The frequency spectrum N(v) can be derived from the calculated frequencies by dividing
the range of values of v into equal intervals dv and counting the number of frequencies in
each interval. Having regard to the accuracy of the calculations and the total number of
frequencies, the interval chosen was

do = 2mdyv = 0-3 x 10Msec.” 1.

Thus three histograms were plotted, each shifted 0-1 x 10 in the w scale from the other two.
These histograms were then smoothed out and gave the frequency distribution curves
shown (figures 5 and 6) which were normalized so that

J " N)dv = 3N, (417)

where N(») is the number of frequencies in the interval » to v4-dv and N is Avogadro’s
number.
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0
000) (2,Iz,2) (4,:1,4) (6;5.6) (88,38)
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(@)

| | l | l | ]
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1
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(b: 0y b2)
(4)

Ficure 4. (a) First-neighbour forces only, () first- and second-neighbour forces.

frequency of main maximum
frequency of second maximum

frequency of minimum

Wyt 0,
Wy 0,

ht. of main max.
ht. of second max.

ht. of main max.
ht. of minimum

TABLE 8

figure 5
(first-neighbour
forces only)

w, =235 x 10! sec.~!
w, = 0-87 x 101* sec.—!
wy =1-32 x 1014 sec.~!

2-7

1.8

1-6

7-8

figure 6
(first- and second-
neighbour forces)

o, =2-40 x 1014 sec.™!
W, =125 x 10 sec.m!
wg =175 x 101 sec.~!

19

14

4-6

14-4


http://rsta.royalsocietypublishing.org/

a
s \
A

ma \

A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

) ¢

A \

4
y

a
, §

S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

128 HELEN M. J. SMITH ON THE THEORY OF THE VIBRATIONS

Separate distribution curves were drawn for the six branches of the spectra; these are
also shown in figures 5 and 6.

Comparison of tables 6 and 7 and figures 5 and 6 shows that the introduction of second-
neighbour central forces increases the magnitude of the calculated frequencies for all the
twenty-nine points of reciprocal space chosen.

The main features of the two frequency distributions are given in table 8.

The shape of the frequency distribution resembles closely that calculated by Blackman
(1937) for a simple cubic lattice containing one type of particle.

2500/ |
2000¢-
= 1500+
1500 » % L
I~ - O
5 -
n ks i
B X
3 -
= 1000
S 10001~
X % B
I~ |© L
[
- »
X A
/5 B ,"'l‘\:" 500
= 500
nA P
I 1 }l\ "’ \
S n “ A (AN
- ll II \\ ‘\ \‘ ,’ \ I,II
— / S\ \ P \
/ WS ¥ X
B ///’:/ ,>\\ / N /// R !
A BN V5 kY N 0 3:0
0 05 10 15 20 25
We Wy Wy, Wy uplh
27y x 10~14 gec. ! 27y x 10~14 gec, !
Ficure 5. Frequency distribution of diamond Ficure 6. Frequency distribution of diamond
(first-neighbour forces only). (first- and second-neighbour forces).

5. SPECIFIC HEAT OF DIAMOND
If N(v) is the frequency distribution function of a crystal then the specific heat at constant
volume of 1 mole is

C, —k f : N) E(%) d, (51)
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AND THE RAMAN SPECTRUM OF THE DIAMOND LATTICE 129
where £ = Boltzmann’s constant, % = Planck’s constant, 7" = absolute temperature, and

E(x) =

x%* . . . .
W is the Einstein function.

N(v) is normalized so that its integral over the entire spectrum gives the total number of
frequencies per mole, i.e. in the case of diamond

| Mo v = 3. (4-17)
0

The Einstein function has been tabulated (Landolt-Bérnstein 1927); values of N(v)
were taken from figures 5 and 6 and the function N(v) E(hv/kT) was integrated numerically
for various values of 7.

Using the distribution function for first-neighbour forces only (figure 5),

C,=0-240 cal./°K at T=100°K, C,=1-159 cal./°K at 7= 200° K. (5-2)
The results obtained using the distribution function (figure 6) for first- and second-neigh-

bour forces are given in table 9 together with the values of the characteristic temperature @
derived from the specific heat according to Debye’s theory.

TABLE 9
temp. (°K) C,cal./°’K 0 (°K)
100 0-0669 1910
150 0:270 1800
200 0-596 1810
250 1-009 1840
300 1-463 1870
400 2-360 1910
500 3-139 1920
1000 4-957 1960
1200 5-231 1960

Born & v. Kdrmén (1912) have shown that the characteristic temperature ® at zero
absolute temperature is Ll o8 b
0= (m) 7, (5:3)
where Qis the atomic volume and 7 the mean velocity of propagation of waves in the crystal.
7 can be calculated from the elastic constants of the crystal by an approximation given by

Hopf & Lechner (1914). For diamond, this gives
0 =1930°K (5-4)

at zero absolute temperature.

Experimental values of the specific heat of diamond have been obtained by Nernst (1911),
Magnus & Hodler (1926), Robertson et al. (1936) and Pitzer (1938). The curve of the
experimental data for temperatures between 70 and 300° K is given in figure 7. Comparing
the calculated specific heats (5-2) and table 9 with experiment it is evident that although
first-neighbour forces alone give far from accurate results, the introduction of second-neigh-
bour central forces produces values of the specific heat in close agreement with experiment.

Figure 8 shows the relation between experimental and theoretical values of the character-
istic temperature ® and illustrates the deviation from Debye’s theory.

Vol. 241. A. 17
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130 HELEN M. J. SMITH ON THE THEORY OF THE VIBRATIONS

There is no information available on the temperature variation of the measured elastic
constants, but Krishnan (19464, b) has investigated the thermal expansion of diamond and
the temperature variation of the Raman frequencies. The frequency shift of the principal
Raman line decreases from 1333-2cm."! at 85°K to 1316 cm.™! at 976° K, i.e. a variation
of 1-3 9, per 900° K of the value at 300° K. The corresponding change in the atomic constant
aover 900° K is, from (4-12), approximately 24 %, of the value at 300° K. Since the variation
in the lattice constant is only about 1 9%, per 900° K, the change in the elastic constants can
be taken to be 2% 9, per 900° K, i.e. 1 %, per 100° K of the value at room temperature. This
variation will have no appreciable effect on the calculated specific heats as it is much less
than the limit of error of the calculations.

15
10— 20001
M ® ®
= T 0
g 9
QA —~
051 i 1800 ©°
€2
| J 16000ty bbb L L
0 100 200 300 0 500 1000
temperature (° K) temperature (° K)
Ficure 7. Specific heat of diamond. Ficure 8. Temperature dependence of ©.

—— experimental curves, ® calculated values.

PART II. THE RAMAN SPECTRUM OF DIAMOND

6. INTRODUCTION

The Raman effect, the scattering of light by liquids and crystals with change in frequency,
was first observed in 1928. In the case of crystals, the frequency differences between the
incident and the scattered light can be correlated with the vibrational energy states. To
simplify the problem, Placzek (1934) assumed that though it is the electrons which interact
with the incident radiation, the changes in energy are absorbed by the nuclei which perform
small harmonic oscillations about fixed positions. The polarizability tensor of the crystal on
which depends the induced electric moment, can then be expressed as a power-series in the
vibrational amplitudes, and so the matrix elements of the polarizability are calculated in
terms of the energy states of the nuclei and the unperturbed electric moment of the crystal.

The Raman spectrum of diamond has been investigated since 1930, but before 1944 only
a single intense line with a frequency shift of 1332 cm.~! had been observed (e.g. Robertson
et al. 1930). This line was attributed to the triply degenerate vibration against each other
of the two interpenetrating simple lattices of carbon atoms. In 1944 Krishnan succeeded
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AND THE RAMAN SPECTRUM OF THE DIAMOND LATTICE 131

in photographing the second-order Raman spectrum of diamond using the 2536 A radiation
from a water-cooled quartz mercury arc. He repeated his observations in 1946, obtaining
spectra of greater intensity and higher resolution. This experimental method, first developed
by Rasetti in 1930, can be used only with ultra-violet transparent diamonds, but since both
ultra-violet transparent and ultra-violet opaque diamonds give the same frequency shift for
the principal Raman line, it is unlikely that there is any difference between the second-order
spectra of the two types. The second-order spectrum consists of a continuous band with
superimposed small peaks, extending over about 600cm.”! with its maximum near the
mercury line at 2698-:9 A. The frequency shift of this maximum from the exciting line is
2460 cm."!, There is a small peak with a shift of 2176 cm.~! at the high-frequency side of
the band, and at the other side a sharp line at 2666 cm.”! (the octave of the first-order
frequency) marks the cut-off of the band. '

The Raman spectrum of any crystal consists in general of a first-order line spectrum, a
second-order line spectrum of sums and differences of the first-order frequency shifts, and
a second-order continuous spectrum of sums and differences of any two vibration frequencies
belonging to the same wave-vector. Born & Bradburn (1947) first developed the theory of
the second-order continuous spectrum and applied their results quantitatively to rocksalt.
The general theory explains satisfactorily the main features of the diamond spectrum, the
extent of the continuous band and the positions of the maxima and the cut-off. The results
depend only on the measured elastic constants, the lattice constant and the first-order Raman
frequency shift. In order to explain the relative intensities of the different maxima it would
be necessary to consider the interaction between electronic configurations around neigh-
bouring nuclei in the crystal.

7. GENERAL THEORY OF RAMAN SPECTRA

Classically, elliptically polarized incident light

E = R(Ae¢ i) = L(Aegmivt A*¢ot), (7-1)
produces an electric moment M in the crystal, with rectangular components
M, =§(xl,,Aa (p,0=1,2,3), (7-2)

where %o is the polarizability tensor.
If s is a unit vector normal to the direction of observation, then the intensity of the
scattered light is
I=wv*Ms|*=0'3 Ya,0fd,AFs,s, (7-3)
po py
From the standpoint of quantum mechanics the intensity of light scattered in a transition
from a vibrational state » to another vibrational state v’ is then obtained by replacing w* by
(0+w,,)* and a,, by the matrix element [a,,],,; since v,, < for all lines excited by a given
incident beam, we may put
Z Z [“pa']vv [a’;w v’ Aa'A;k sps,u
po

= 2 z [ipor, ;w]vv’ Aa'A;k sps,u'

po w

(7-4)

17-2
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132 HELEN M. J. SMITH ON THE THEORY OF THE VIBRATIONS

For natural incident light and scattered light observed without an analyzer, averages
over the polarization of the incident and scattered light give

N\

A,4% = —Iycosf, cosl, (U#p),'l

A, A% = I,sin20),

R (:0 o=1, 2: 3)3 (75)
$,8: = —5COS ¢, COs P, ((r:lzp),J ’

:s—p = §sin®g ,
where [, = §|A4|* = E* = intensity of the incident light, #, are the angles between the
incident beam and the co-ordinate axes, and ¢, are the angles between the observed beam
and the axes. In particular, if a natural incident beam parallel to a co-ordinate axis is

observed normal to its direction,

0, =0, Oy=0;=14m, ¢ =¢3=13m, ¢$,=0. (7-6)
4,0 55,0 (p0),
A AF =0, A AF = 4, 4% = I, (7°7)
$181 = $383 = &, 838, = 0.
So Ly = $16[[i1o, 1210w+ [z, 23]+ [0, 31w+ L3, 55]uw]- (7-8)

Since the last term represents an anisotropic effect depending on the axis normal to the

plane of the incident and observed light, we replace it, for cubic crystals, by 3 [2,, ,,lu

0 . p
HCIICC Ivv’ - %]0[%% [Z,uv, /w]vv +%§ [Z,uﬂ, /L/I,]UZ)’] . (7‘9)

[ipa, /w] w T [apa] v’ [0‘7:1)] v’ (710)

for all vibrational transitions v to ¢’, since there are many transitions belonging to the same

frequency, the weighted mean of this quantity must be calculated. Ife, is the energy of the

system in the state v then 3 [y, ol €57
v

z e—ﬁu/kT >

v

Considering generally

(7-11)

<ipo', ,uv>av. =

where k£ = Boltzmann’s constant, 7" is the absolute temperature, and the summation is
over the initial state v.

8. EXPANSION OF THE POLARIZABILITY IN TERMS OF NORMAL CO-ORDINATES

The equilibrium positions of the nuclei and their small displacements u(i) are defined

as in § 1 above. Expanding the polarizability tensor in powers of these displacements,

© D@
o R py = L p Oy 0o (8:1)
where ®,, = constant,
(¢9] Z l ([)
= a , .
%por % = pc,ﬂ(k) “u\ i (8-2)
) i) ol
0,y = o el ul )
po % gg ptf,,tw(kk Mk k

All these quantities are symmetric in p and o.
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AND THE RAMAN SPECTRUM OF THE DIAMOND LATTICE 133

The coeflicients of the terms in this expansion are derivatives of the polarizability taken
in equilibrium and so satisfy certain conditions arising out of the symmetry of the lattice.
In addition the electric moment of the lattice, like the potential energy, is invariant for
a rigid translation of the crystal as a whole.

Hence %, /‘(ﬁc) is independent of /, (8-3)
iy -7 ,
% po, ﬂV(kk’) = %o, ;w( Kk )= (8-4)
3y, (B) = 0, (55
)
; %“P“’f‘”(kk’) = 0. (8+6)

Following Placzek we assume that the nuclei form a set of 35N coupled harmonic oscil-
lators. (N is the number of cells in the crystal.) Then the equations of motion of the nuclei
comprise N sets, each of 3s equations of the type

(L =y (U
va(k)ju% %Da,,( o )vﬁ(k,) ~o. (1-9)
In §1 these equations were solved by introducing a plane wave, but here we introduce

complex normal co-ordinates 5(3) . Then

o)l - 34 ) .
and (1-9) becomes wz(j.) e“(k ’ 3) ——% %D“ﬂ(/c?c’) eﬁ(/c’ i) =0, (8-8)

where j = 1,2,3,...,3s (cf. (1-11)). The choice of possible wave-vectors q is restricted as
before by the condition of the cyclic lattice.

The ea(k|j.) are the components of the eigenvectors of the lattice corresponding to the

frequency (u(j) and satisfy the orthogonality relations

b9 o sl
mzke( ilexle] ) =00, sek D) es(k ) = otap e, (8-9)
Each complex 5(3) represents two real normal co-ordinates, but since
—q — *(4) ,.
g( j ) g pE . (8:10)

restriction of the values of q to half the unit cell of reciprocal space reduces the number of
co-ordinates to the correct value.
Substituting (8:7) in (8-2),
)

D N L CHEUR: (s11)

aj -p ik J %’;


http://rsta.royalsocietypublishing.org/

A

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
I

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

134 HELEN M. J. SMITH ON THE THEORY OF THE VIBRATIONS

The factor 3 ¢ is a d-function of q and is zero unlessq = 0. Hence
7

z =Sl )E(): (8:12)

where “”"(j’) = % %o;pg,ﬂ \ Ty (8:13)

The matrix elements [§(0>] vanish except for transitions v—v" belonging to the
frequencies :tw(j); so the first-order Raman effect is a spectrum of 3s—3 lines. (The three
acoustic branches of the frequency spectrum of a crystal have a)(j) = 0.) This line spectrum

does not exist if each lattice point is a centre of symmetry, for in that case af) = 0.
The second-order polarizability becomes

EH
~33353a (Z‘f')eiw-rwﬂ')e (k!q.)e (¥ ‘—’.:) T g
qj ¢’ wv Ik UK Po I\ kk # J ” J \/(mkmk’>
Substituting / for (I—{"), the factor Z{e“m‘-"') is a d-function of (q+q’). So using (8-10),
@
o= 3 S L)% ex(?). (815)
q Ji J J
Iy . q g 1
i(q.1) % .
where (ﬂ ) 333, ol kk,) ¢ eﬂ(k'j) . (k j,) T (8-16)

9. CALCULATION OF THE INTENSITY DISTRIBUTION

Consider first a set of real oscillators characterized by quantum numbers ;. The matrix
elements [7,],,, of the amplitude of one of these oscillators are zero unless v; changes by +1
while all the other v;, are unchanged. The matrix elements [7?],, of the square of the
amplitude are zero unless v; changes by 0 or 4-2, and the matrix elements [7,7,],, (j=J")
of the product are zero unless v; and v, both change by +1.

The non-vanishing elements can be arranged according to the frequencies

Wy = Za)j(vj——vj’.) (9-1)

and are set out below in table 10, where ¢; = /(%/20;).

TABLE 10
"7_] ﬂj 77] 77;
0 —_— — c]?(Zvj +1)

+o; ¢ (v +1) —

—0; ¢ Y -

+ 20, — — 2 J[(vj+ 1) (v;+2)]

—2w; —_— — 2 [v; (v, —
w;+0; — ¢,¢p (v +1) (vp+1)] —

— (w;+ ;) — ¢icp J(vjvj.)

NE
|
&E
NQ
N‘\
¢
™%
=
N
=
+
o
SN
| —
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Further, a product of the form i) (73] Vav. (9-2)
will be zero unless both factors refer to the same oscillator, and a product
<[’]j ’]j’]vv’ [”j””j"’]vv’)av. (9.3)

will be zero unless the first factor refers to the same pair of oscillators as the second, i.e. unless
j =.i//’j, =j”/’ OI‘j =j,”ajl =j”,
For complex oscillators §; = 7, +4-4(;, the thermal average of the amplitude product
<[§j]vv’ [gf]vv’>av. = 2< [77] gv’ av.* (94)
Onmitting the case v = v (Rayleigh scattering), there are three possible ways of choosing
the indices j in the second-order amplitude products. The thermal averages corresponding
to those three ways are:

J=J"=3"=J" & L. = K1} Dav. (9-5)
j :j”, j, :j”/’ ]:i:]la <[£j£;5]vv’ [gfgj']vv)av. = 4([77] ’]j’]gv'>av.$ (9.6>
J=J"7"=J"7%1" §&Flw [§E] luwdav. = 0. (9°7)

The thermal averages for the real oscillators are obtained from (7-11) and table 10, and
are given in table 11 below. The abbreviations used are

ho, ) c?
bi=smr COU) =15 (9-8)
TABLE 11
[7,130dav. 733 av. <[5 15130 av.
+o; C(j) eh — —
—; C(y) — —
20; - 2C(j)2 28 —
— 30, — 2C(j)2 —
w; ;. — — C(j) C(j') e bi=pr
—(0;+wy) — — C(4) 64"
“iTr - — C(G) C(j') e

Hence for the first-order effect, from (7-10), (8-12), (9-4) and table 11, the intensity of
a single transition is

. 0) . { (0 (0)} { 1 (Stokes line)
)= 2c Yoor (© .
i )= 2000 el J2 (1, - (anti-Stokes line). (-9)

The Stokes lines are the frequency shifts —w((j).) and the anti-Stokes lines the frequency
shifts —I—a)(g.) .
Similarly from (7:10), (8:15), (9-5), (9-6) and table 11, the intensity of a single second-

order transition is Stokes anti-Stokes

ol G-t (Drecl Pl Ly 0 o
il )= 26(5) () el T et 2)+erol £) (2] :

¥/ NZARVEARGAV/ RV VARGV VAVl ) A9
corresponding to the frequencies w(q) —|—a)( q/)

o) - off)—of%) (11

] o).
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136 HELEN M. J. SMITH ON THE THEORY OF THE VIBRATIONS

Then the intensity of a first-order line excited by an incident beam A and scattered in

a direction 8 is, from (7-4),

. . N5 — .
I(j) = > zpu’/w( ) A,4%s,s, (j=1,2,3,...,(35—3)). (9-12)
po, 1y J

To calculate the observed second-order intensity, the single transition intensity (9-10)
has to be integrated over the part of reciprocal space 0<C¢<C1 which belongs to the appro-
priate frequency interval (v, w-dw): '

ipa, /w(w) do = Z fjf ipo', ;w( Z’) dgl d‘]z dgfi (9'13)
JJ N
o< lw(jz.,) ’ <w+dw
Thus the total second-order intensity produced by incident light A scattered in the
direction s, is I0)= 3 i/w, y (0) A_p A/’f STSV- (9-14)
po, i

If the lattice has more than one particle in the unit cell, then the optical branches of the
frequency spectrum tend to finite limits as q approaches zero. Consequently the range of
integration in (9-13) has to be split into two parts, one part containing the single point
q = 0, and the other, the rest of the allowed range. At the point q = 0 the summed integral
(9-13) reduces to a sum over j and j' in which there are (3s)? terms. The frequency shifts
corresponding to these terms are sums and differences of the (3s—3) first-order Raman
frequencies, so there will be 3s(3s—3) second-order lines (3(3s—3) of these will coincide
with the first-order lines) ; nine terms belong to combinations of the acoustic branches and
have zero frequency shift.

The summed integral (9-13) taken over the remainder of the allowed part of reciprocal
space has (35)2 terms. Hence the observed spectrum will also contain (3s5)* continuous
bands, each one of which has a maximum at a certain point. The result of the superposition
of these bands is a continuous background with a large number of peaks.

10. CALCULATION OF THE RAMAN SPECTRUM OF DIAMOND

(a) First-order line spectrum

The polarizability terms occurring in (9-9) are given explicitly by (8-13):
0 0y 1
) — () (k( .)——, 813
‘xpo'(]) %%zxp B J! Jmy, ( )

where for diamond, £ = 1 or 2,j = 1,2, 3,4, 5,6 and m; = m, = m.
From the invariance condition (85)

apd,ﬂ(l)+“p0,/b(2) = 05 (101)
and by applying the matrices of the symmetry operations given in § 2 above, we find
g, 3(1) = gy (1) = oy, 5(1) \ (10-2)

= —ayy 3(2) = —y3,1(2) = —ag;, 5(2) = n.]

The remaining «,,, ,(k) are all zero.
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AND THE RAMAN SPECTRUM OF THE DIAMOND LATTICE 137

The eigenvectors ¢, (k| j) at the point q = 0 are the normalized latent vectors of the
dynamical matrix D(g) at ¢ = 0, viz.

e,(1]1) =1/J2, ¢(1]1) =0, ¢s(1]1) =0,
a(112) =0,  e1]2)=1/2,  &1]2)=0,
e,(1]3) =0, £5(1]3) =0, es(1]3) =1/J2,
e(L]4) =1/y2, (1]4) =0, e3(1]4) = 0,
e,(1]5) =0, e,(1]5) =1/J2,  e5(1]5) =0,
al]6) =0,  a(1[6)=0,  «(1]6) =1z, 03)
81(2|1)=—1/J2, 62(2|1) =Y 83(2|1)=03
e,(2]2) =0, (2]2) = —1/J2, ¢(2]2) =0,
6213) =0,  ]8)=0,  «2]3)=—1//2
61(2'4) =1//2, e2(2l4) =% 33(2l4) =Y
¢,(2]5) =0, e,(2]5) =1/J2, ¢(2]5) =0,
¢,(2]6) =0, ¢5(2]6) =0, es(2]6) =1//2,
corresponding to the frequencies
8
w(1) = 0(2) = o(3) = %} (519)
0(4) = 0(5) = 0(6) =
Substituting in (813)
0 0 0 .
“”(j) = “22(]') = “33(j) =0 for all j, (10-4)
0512(3.) =0 for j =1,2,4,5,6, (10-5)
0 . ‘ ' .
oczsl(j) =0 forj=2,3,4,5,6, (10-6)
10’431((}) =0 for j = 1,3, 4,5, 6, (10-7)

- “,12((?::) = “23((1)) = “31((2)) ZA/;% n. (10-8)

But for a natural incident beam observed normal to its direction without an analyzer,
Ivv’ = %IO[% E [i;w, /w]vv'_i_%z [i,u/c, ,u,u]vv’] > (7'9)
w 2

so we have to form the quantities A(j) given by

A(g) = %% “‘"’(3’) }2.;_%% a""(?’) 2. , : (10-9)
From (10-4) to (10-8),
' A(l) = A(2) = A(3) = -2—:72, A(4) = A(5) = A(6) = 0. (10-10)

Vol. 241. A, 18


http://rsta.royalsocietypublishing.org/

JA '\

/ y

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A A

A \
1~

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

138 HELEN M. J. SMITH ON THE THEORY OF THE VIBRATIONS
Since w(l) = w(2) = u(3),

Pr="F=Fyp C(1) =C(2) = C(3), - (o1
so the intensity of the single first-order line is

10)= 3 hA(j)ec(y| ! (Stokesline),
=123 ¢~#  (anti-Stokes line)

[ 1 (Stokes line),

= 3[,4(1) C(1 10-12
041 & )1e‘ﬂl (anti-Stokes line). ( )
(b) Second-order spectrum
The polarizability terms in (9-10) are given by
) # ol ) ) 7
o éae VK| L) ek | 3)———, 816
”"(ﬂ) TE Lt ’”( AL T T () (816)

where k, k' =1or 2,j,7'=1,2,8,4,5,6 and m; = m, = m.
First consider the constants « - /w( ki,); the ( kﬁc') label the bonds between a nucleus
( /?,) of the base cell and some other nucleus k) . The number of independent « 00, ,w( kﬁc’)l can

be reduced by applying the symmetry operations of the lattice and the invariance condition
(8:6). In the diamond lattice, each nucleus in the unit cell has 4 first neighbours and
12 second neighbours; to account for the observed specific heat it is necessary to assume
central forces between second neighbours. If the polarizability were taken to the same

approximation as the dynamical matrix D( kﬁc’) , there would be in all 32 different values
of ( kic') to consider. But these «,,, /a,( i k’) are derivatives of the polarizability of the crystal

taken in equilibrium and so depend on the interaction between the electrons surrounding
neighbouring nuclei in the lattice. The determination of this interaction is a perturbation
problem in quantum mechanics which will not be considered here. Therefore to reduce
the number of arbitrary constants appearing in the intensity factors to a minimum we

shall assume that the « ,, W( kﬁ{,) are zero for all neighbours except the first.

. [ . . l
Labelling the bonds ( i k,) as in table 1, §2, the 10 independent &, W( 3 k’) are:

ay, (1) = a, g, 11 (1) = 2yp 22(1) =1,

“11,22(1) = Uy, 53(1) = “12,33(1) =4

o, 12(1) = C: g, 12(1) = 4, - (10-13)
a1, 23(1) = %3, 23(1) —-J;

ty,51(1) = 9, 51(1) =

All the other non-zero ., ﬂ,,( lcic’) can be obtained from these by the use of the symmetry

operations of § 2 and the invariance condition (8-6).
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AND THE RAMAN SPECTRUM OF THE DIAMOND LATTICE 139

Now consider the eigenvectors eﬂ(k

?) There is no difficulty about the second-order

line spectrum for the range of integration in (9-13) is the single point q = 0 and the eigen-
vectors required are given in (10-3) above. But for the continuous part of the spectrum,
although the eigenvectors could be found for each point of reciprocal space for which the

corresponding frequencies (u((j) are already known, the calculations would be lengthy and

tedious. The frequencies w( _q/) as functions of q, are stationary at the point q = (3,3, §)
(cf. figure 4 above) ; the frequency density z;;.(0) of w(z.,) , given by
2,;(0) do = f f f dq, dg,dgs (10-14)
w<’ (]J ‘<a)+da)

will be a maximum at this point. Thus a first approximation to the summed integral (9-13) is

iﬂ”»ﬂl’( w) = z Zpo',/w(Z )Z (), (10-15)

where q = (3,3, %)-
At the point q = 0, (8-16) becomes

ol j7) - %{“ﬁ(l el iff)“el(zlﬁ)%( el etz f) ez err] )
Al 0 )l b o2
D oo | o
el ) = et a1 5) el G ) —ale] Derlel )2l 2] )
sl Y )l [ el )l )
Substituting the eigenvectors (10-3),
““(101) - %?’ “(202) = _%f" “(303) :_—%zbﬂ’\
“22(101) = ”"'?né’ “22(202) - "%?’ 22(303) = “%’
0 8b 0 8b 0 8 (1027)
“33(11) T “33(22) T “33(33) = _Ea’
“12(102) “23(203) = “13(103) = "%
All other « p(,(;]).) are zero
Now let A(Jg,) -43 /W(Jg) 2+%§ %(2/) ’ (10-18)

18-2
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140 HELEN M. J. SMITH ON THE THEORY OF THE VIBRATIONS

A(lol) - A(zgz) - A(303) 3642( *+20%), 1

0 0 0 64 (10-19)
— — —_ — h2
A(12) N A(23) - A(13) =l J
. 0 0 ..
S a)(,): (.,)fr,’=1,2,3,
inceof ;) =of ;) fo 5J
w( 0,) = (u(O.)—}—w( O,) = 2'\/%, (10-20)
V) J J m
a)( O,) = w(o.)—~w( 0,) = 0. (10-21)
J J J

Hence C(O) = C( 0,) and ,b’(o) = ,6’(;.),) forj, 7' = 1,2, 3, and there will be a single second-

order Raman line for diamond with a frequency shift w( ) =2 J — and intensity, from
(7-9) and (9-10), 1
1 (Stokes line)

1( 0) — 1 zA(ﬂ)zc(j) or (10-22)

0
e~2/,>( ) (anti-Stokes line).

At the point q = (3, 3, %), (8:16) becomes

an( ) = =2 a1 1) (117) 42 (21) et ] ) +ar(t 1)) 2] ) +a2]f) L]}

-—-32-5{262(1 |) e (L]7)+265(215) e (2157) +ea(1 [ g) e (2]57) +ea(2]5) (1] 57)
+2¢5(1[7) e (1] J7) +23(217) € (2] 57) +e(1 1) €5(21 ) +e(2 [ 5) e$ (1]}

2¢ 10-23
21 1) Tal ) d@] ) vl i) g i) ra@aalny [ 10

F 21 @17 et 1) (2 17) a2 ] ) (115 (2] ) (15}

+2—nj{63( ) et (2157 +ea(L]h) et (2157) +es(21) e (L1) +ea(2 1) e (115}

J

N

"’12(]] ) f{eﬂ L) eF (2] 7)) Fes(L] ) e (2]5) e (2] ) et (1| 5) +en(2 ] ) b (1] 7))
+5{e3<1 | 7) ek (2] 5) Fes(2]5) (1177}

— o 2a(1]7) e (1] J") +2e,(1]7) € (1] ') +2e0(2 ] ) e (2] 57) +265(2] ) € (217)
Fa(l])) 2] +e(l])) 2]y +a@]i) d(1])) +e(2]) e (115}

(10-24)

f{el (L1J) ek (2] J) +en(L] ) (2] 5)+er(2] ) (1] ) +en(2] ) (1]}

+;n~{63(1 [ et 215) +es(115) e (215) +Fes(2]) e (1]5) +es(21) e (115}
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AND THE RAMAN SPECTRUM OF THE DIAMOND LATTICE 141

The eigenvectors e(k 31) atq = (4,4, 1) are the normalized latent vectors of the dynamical

matrix D(g) at that point. From (3-6) and (3-18) they are as follows:

a(ll)= 3 ep(1]1) = e3(1]1) = 0,
a(l]2) = 1/2/3, el 12) 1/2J3> e5(1]2) =—1/3,
e(L]3)= 1/J6, &(1]3)= 1//6, e(1]|3)= 1//6,
e(114) = 1//6, e(l]4)= 1//6, ¢(1|4)= 1//6,
e(1]5) = 4, e(1]5) =—% es(1]5) = 0,
A0~ u2ys, o]0 = v el -—uml
e(2]1) = 4, e(2]1) = e(2]1) = 0,
6(2]2) = 1/2/3, ¢(2]|2) = 1/2J3, e5(2]2) = —1/3,
a(2]3) = 1/J/6, &(2]3)= 1//6, &(2|3)= 1//6,
e (2[4) =—1//6, &(2[4) =—1//6, e5(2]|4)=—1//6,
e(2]5) =—14, (2] 5) = 3 e5(2]5) = 0,
81(2[6) =—1/2./3, ez(QIG) =—1/2,/3, 83(2|6) = 1//3.]
)

These values are inserted in (10-23) and (10-24) and a lengthy calculation leads to the

following values of . 2
A0 = 13 ol 1) 432 e 1) (1026)
at the pointq = (3,4, 4):
m?A(11) = H2(3a+83b+c+e)>+4(8b+d)}}+2(f+g—j—k)2+4(f+3h)2)
m?4(22) = {2 (3a+15b+c+4d—i—e) +4(6a-+3b+2c—d+2¢)?}
L 3(5f g 12— — )+ §(f+ 2g— 3h—2j—2k)2,
m?A(33) = £(8a+ 6b—2c—2d—2¢)2+4(2f+g— 6h+ 27+ 2k)?,
m24(44) = $(a+2b+2c+2d+2¢)2 4+ %(2f+ g+ 2R+ 27+ 2k)?,
mA(5) = HRatb—c—e) 40312 g RIS |
m?4(66) = 4{2(a+5b—c—4d—e)?+4(2a+b—2c+d—2¢)%} o
+5(6f+g—4h—y—k)*+5(/+ 28 +h—2—2)?,
m?A(12) = 2(3a—8b+c—2d-+e)2+3(f—g+6h+j+£k)?,
m?4(13) = m?4(28) = $(3a—38b—2c+d+e)>+%(f—g— 3h-+j—2k)?,
m2A(45) = m?A(46) = $(a—b—c—d+2e)*+%(f—g+h—2j+k)?,
m?A4(56) = 2(a—b—c+2d—e)?+2(f—g—2h+j+k)2 J
All other A4(jj') are zero.
Then the intensity distribution of the second-order continuous spectrum is
Stokes anti-Stokes
) = 3 5,0 O N A6 Ly, T (1025)
i ~BJ) e~ B

with 4(jj"), C(j) and f(j) taken at the pointq = (4,4, 3).
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11. NUMERICAL RESULTS

(a) First-order line spectrum

The observed value of the frequency shift of the principal Raman line (1332 cm.~1) has
already been used to determine the values of the atomic constants of the lattice (cf. (4-12)).

The total intensity given by (10:12) contains as a factor the arbitrary constant n = a,, 3(1).

0
The ratio of the intensity of the Stokes line to that of the anti-Stokes line is ¢’ () where

kw(?)

ﬁ’(?) = Sk T

Taking w((l)) = 2-51 x 10'sec.”!, and the temperature of the crystal to be 300° K, this

ratio is 586. The observed value given by Krishnan (1946¢) is 575.

(b) Second-order line spectrum

The frequency shift of the single second-order Raman line of diamond is, from (10-20),
twice the frequency shift of the first-order line, i.e. 2664 cm.~!. This agrees satisfactorily
with Krishnan’s experimental result of 2666 cm.™!. The intensity of this line (10-22) contains
three arbitrary constants,

a=0‘11,11(1)a 53“11,22(1), h=“12,12(1)-

No data are available on the ratio of the intensities of the Stokes and anti-Stokes lines.

(¢) Second-order continuous spectrum

Referring to § 4, the density functions z;;(w) can be calculated from table 7 by the same
method that was used to obtain the frequency distributions. The range of values of v is
divided into equal intervals dw = 0-6 x 10'*sec.”! and then the number of combinations
a)(j(‘]].,) = w(z) iw(}q.,) of frequencies belonging to the same wave-vector q can be counted in
each interval. Three histograms are plotted, each shifted 0-2x 10'sec.”! in the o scale
from the other two. These histograms are then smoothed out and give the frequency density
curves z;;.(w).

From (10-27) we need consider only the 18 branches for which the 4(jj") are not zero.
The density functions z;;.(w) for these branches are shown in figure 9 and the frequency
shifts of the maxima of the branches are given in table 12.

Comparison of figure 9 with Krishnan’s experimental results shows that the factors 4(jj")
must be zero for the branches 4, 5, 7, 8, 9, 11, 12, 13; i.e.

A(55) = A(66) = A(45) = A(46) = A(56) = 0. (11-1)

The branches (10), (0, —w;) and (w,—w;), may be covered by the incident mercury line.
Further, the calculated maxima at 2177 and 2469 cm.™! can be identified with the experi-
mental peaks at 2176 and 2460 cm.™!. These calculated frequency shifts depend only on
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AND RAMAN SPECTRUM OF THE DIAMOND LATTICE 143

the measured elastic constants, the lattice constant, and the frequency shift of the principal
Raman line. Krishnan claims to identify a number of additional peaks on either side of the
main maximum at 2460 cm.™! but from the microphotometer record there is no reason to
suppose that these are anything other than random fluctuations of intensity.

0 05 1-0 15 20 25 30 35 40 45 50 55
27y x 1014 sec.!

Ficure 9. Frequency density functions z;; (o).

20,. 2 20, 5 2w T w,+ oy 10 {wl—-ws. 12 w,—w;.
1 {2w,. 3 2w,. g [©1T s 8 wy+ wg. Wy — Wg. 13 wy5—wq.
0y + 0y, 4 2wy, Wy + 3. 9 w5+ wg. 11 w;—ws.
TABLE 12
(cm.™1) (cm.-1)
2w, 7 Wy +ws 1805
1 20, 2602 8 Wy + g 1683
W+ 0, 9 W5+ g 1434
2 20,4 2469 w— ‘
3 20, 2177 10 0y — 0, 106
4 2w, 1487 11 Wy —wy 345
5 2w, 1258 12 Wy —wg 409
w; +w, 13 W5 —Wg 133
6 Py 2522
Now from (10-26), if 4(55) = 0,
at+b=c+e, b=d, ft+g=j+k [f=h, (11-2)

and so A(66) = A(56) = 0.
If A(45) = 0, then using (11-2),
' a=c¢, b=d=e, f=h=j, g=F,
1.e. gy, 11(1) = 215, 12(1),
%y, 2o(1) = %13, 23(1) = “11,33(1) = “11,31(1):
%19, u(l) = “12,12(1) = &y, 29(1) = %9, 23(1),

0‘12,33(1) = “12,31(1)-

» (11-3)
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144 HELEN M. J. SMITH ON THEORY OF THE VIBRATIONS
Then the remaining non-zero 4(jj") become,

32

A(11) = A(22) :W(a2+2ab+352+6f2),\

A(33) = (h(a+26)2+ 33 /),

A1) = A (@ 2m(2f 1o, » (11-4)
A(12) = 2 a—b)2+4f7,

A(13) = A(23) = . (e~ B+ (f+39)%:

Table 13 gives the values of ¢#() and C(j) for the point q = (4, §,3), taking the tem-
perature of diamond to be 300° K.

TABLE 13
J 1 2 3 4
o(j)x107¢  2:50 2-50 2-34 211
B 0-00175 0-00175 0-:00263 0-00470
2C(j) [ x 1014 0-401 0-401 0-429 0-476

The frequency density functions corresponding to the non-zero 4(jj’) are then multiplied
by products and squares of these C(j) and ¢~/ asin (10-28). Lastly, by choosing appropriate
values of ratios of the A(jj’) in (11-4) it is possible to approximate to the observed total in-
tensity of the Stokes branches; the final result is shown in figure 10, which contains the
separate branches, the total intensity, and Krishnan’s experimental curve. The ratios

between the A(jj’) are 435y, 4(44): 4(11): 4(13) = 40:12:1:1. (115)

\
{
\
PEn

|
RN o
l
il

7 ~ —_—
L L I St I
1700 1900 2100 2300 2500 2700 2900
v (cm.™ 1) Stokes branches

Ficure 10. Second-order Raman spectrum of diamond. Fine line is a sketch of Krishnan’s micro-
photometric record of the Raman spectrum of diamond (Krishnan 1946¢): broken lines represent
theoretical contributions to the intensity of frequency density functions z;;.(w) after multiplication
by appropriate factors: thick line represents the superposition of these functions, i.e. the total theo-
retical intensity. ’
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From the relations (11-3), (11:4) and (11-5) between the derivatives of the polarizability
tensor it may be possible to obtain information about the electronic configurations in the
two types of diamond.

The approximation could be improved by removing the degeneracies in the frequency
spectrum, by considering elements of the polarizability tensor referring to second neighbour
atoms, or by calculating the eigenvectors for more than one point in reciprocal space. The
agreement between experiment and theory is, however, sufficient to show that lattice
dynamics is able to give a satisfactory explanation of the Raman spectrum of diamond.

I wish to thank Professor M. Born, F.R.S., who suggested this problem to me, for his
continued interest and his advice on many occasions.
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